
Programming in Coq

Yves Bertot

October 2018

1 / 16

Why use Formal verification tools

I Write programs with less bugs

I Document the programs with logical statements

I Verify the logical statements with the computer

I Model and verify existing programs or systems

2 / 16

Example of program with less bugs

I Compcert C compiler

I Use a formal description of the C programming language and
assembly languages

I Construct a formal description of a compiler from C to
assembly

I Prove that the compiler respects the semantics of programs

I Independently tested by the C-smith tool

I More information on
http://compcert.inria.fr/motivations.html

3 / 16

http://compcert.inria.fr/motivations.html

Compiler correctness statement

Taken from CompCert 3.4, file driver/Compiler.v

Theorem transf_c_program_correct:

forall p tp,

transf_c_program p = OK tp ->

backward_simulation (Csem.semantics p) (Asm.semantics tp).

Proof.

intros.

apply c_semantic_preservation.

apply transf_c_program_match; auto.

Qed.

4 / 16

Ambitious projects

I End-to-end verification of large systems

I Formal verification brings composability

I Complex inner parts can be factored out

I You only need to understand the definition and the top
statement

I The odd-order theorem in group theory (Feit-Thompson) is an
example

I The definitions and the statements fit in two pages

5 / 16

Let’s start easy

Two ways to develop software in Coq
I Describe algorithms inside Coq, Execute outside

I Stronger programming tools
I Lighter runtime environment

I Do everything inside Coq
I Simpler programming language
I Use Coq as an interpreter
I Instant feedback

I We will mostly show the latter

6 / 16

Basic data structures

I numbers 1, 42, 1024

I boolean values true, false

I pairs (1, true)

I lists of things 1 :: 2 :: 3 :: 4 :: nil

I functions fun x => x

7 / 16

More about functions

I binary operations on numbers +, *, / mod, -

I boolean relations on numbers <?, =?, <=?

I boolean operations on boolean values &&, ||

I boolean negation negb

I test on boolean value if then else

I projections on pairs fst, snd

I more complex programming structure for lists (to be given
later)

8 / 16

Defining and using your own functions

I Give a name to a value : Definition name := value.
I Give a name to a function :

Definition fname := fun x => x.
I Alternative : Definition fname x := x.

I Use a function: write the name before the argument
write f (fname 1)

I parentheses not always needed

I Check your own steps using the Check command.

I Compute your examples using the Compute command.

I Know what is defined using the Print.

9 / 16

Examples

Require Import Arith Bool List.

Definition add2 x := x + 2.

Check add2 3.

add2 3 : nat

Compute add2 3.

= 5 : nat

Definition twice (f : nat -> nat) (x : nat) := f (f x).

Compute twice (twice add2) 1.

= 9 : nat

10 / 16

Comments on the examples

I twice is a function with two arguments
I the syntax is really different from C, java, etc.

I parentheses are needed around f x in the definition of twice

I No parentheses around the two arguments in the use of
twice

I twice can also be used with only one argument

11 / 16

Functions about data-structures

I components of a pair : fst, snd

I Fetching elements of a list

match l with

| a :: l1 => f a l1

| nil => v

end

12 / 16

Programming with lists

Definition headplus1 (l : list nat) :=

match l with

a :: l1 => a + 1

| nil => 0

end.

13 / 16

Recursive programming with lists

I Lists can be arbitrary long

I A list has a sub-component that is itself a list

I A recursive program can call itself on that sub-component

Fixpoint grow_nat (l : list nat) :=

match l with

nil => nil

| a :: l1 => 2 * a :: 2 * a + 1 :: grow_nat l1

end.

Fixpoint my_filter {T : Type} (p : T -> bool)

(l : list T) : list T :=

match l with

nil => nil

| a :: l1 => if p a then a :: my_filter p l1 else my_filter p l1

end.

14 / 16

Comments on list programming

I Lists and pairs are polymorphic data structures

I You don’t need to know the type of elements for many
operations

I You can choose for the type argument to be implicit.

I No undefined behavior: all functions must cover the case
where the argument is empty

15 / 16

Making your own data type
I Lists are an example of data type with two cases, and one of

the cases has two sub-components
I You can make your own choice.
I Example drawn from an example available in coq-contribs,

semantics

Inductive aexpr0 : Type :=

avar (s : string)

| anum (n :Z)

| aplus (a1 a2:aexpr0).

Inductive bexpr0 : Type := blt (_ _ : aexpr0).

Inductive instr0 : Type :=

assign (_ : string) (_ : aexpr0)

| sequence (_ _: instr0)

| while (_ :bexpr0)(_ : instr0)

| skip.
16 / 16

